7/1+13/w=12/w^2

Simple and best practice solution for 7/1+13/w=12/w^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/1+13/w=12/w^2 equation:


D( w )

w^2 = 0

w = 0

w^2 = 0

w^2 = 0

1*w^2 = 0 // : 1

w^2 = 0

w = 0

w = 0

w = 0

w in (-oo:0) U (0:+oo)

13/w+7/1 = 12/(w^2) // - 12/(w^2)

13/w-(12/(w^2))+7/1 = 0

13/w-12*w^-2+7 = 0

13*w^-1-12*w^-2+7 = 0

t_1 = w^-1

13*t_1^1-12*t_1^2+7 = 0

13*t_1-12*t_1^2+7 = 0

DELTA = 13^2-(-12*4*7)

DELTA = 505

DELTA > 0

t_1 = (505^(1/2)-13)/(-12*2) or t_1 = (-505^(1/2)-13)/(-12*2)

t_1 = (505^(1/2)-13)/(-24) or t_1 = (505^(1/2)+13)/24

t_1 = (505^(1/2)-13)/(-24)

w^-1-((505^(1/2)-13)/(-24)) = 0

1*w^-1 = (505^(1/2)-13)/(-24) // : 1

w^-1 = (505^(1/2)-13)/(-24)

-1 < 0

1/(w^1) = (505^(1/2)-13)/(-24) // * w^1

1 = ((505^(1/2)-13)/(-24))*w^1 // : (505^(1/2)-13)/(-24)

-24*(505^(1/2)-13)^-1 = w^1

w = -24*(505^(1/2)-13)^-1

t_1 = (505^(1/2)+13)/24

w^-1-((505^(1/2)+13)/24) = 0

1*w^-1 = (505^(1/2)+13)/24 // : 1

w^-1 = (505^(1/2)+13)/24

-1 < 0

1/(w^1) = (505^(1/2)+13)/24 // * w^1

1 = ((505^(1/2)+13)/24)*w^1 // : (505^(1/2)+13)/24

24*(505^(1/2)+13)^-1 = w^1

w = 24*(505^(1/2)+13)^-1

w in { -24*(505^(1/2)-13)^-1, 24*(505^(1/2)+13)^-1 }

See similar equations:

| b=12-6(12-2x) | | 7y-(6y-5)=7 | | 8/x+x+1/11 | | x*2=151 | | 20+x=100 | | 1-x+x+x/2*4=13 | | 2(x-7)=-12(x-2) | | x-6=-(2/9)y | | 3a-24=24+60 | | x-2+x+x/2+3=11 | | x-1+x/1 | | 13y+26=y | | y=10-(1/6)x | | 31+x=65 | | 5u^2+7u+2=0 | | -7(x+3)+4x+7=6x+8 | | 9x+12+60=180 | | (8/x)+22=(2/3x) | | 31+x=50 | | 4x-11=3(x-6)+11 | | 13y+13y=13 | | -4=b/2+9 | | 1/5x+8=3x-20 | | 13y+y=13 | | 3v+(-6.8)=189.1 | | .50x+9=.75 | | 2(-4s+2)=-5s-10 | | -(5x+8)+1=3x-7-8x | | 3r-8=3(r-6) | | 8y+x=11 | | 4sin^2+4cos^2+1=0 | | -(5x+8)+1=3-7-8x |

Equations solver categories